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In a previous paper [1], certain conditions, due to H61der, Voronets and Suslov in the case of linear constraints, for deriving 
three forms of Hamilton's principle in generalized coordinates and velocities for the general case of non-linear non-holonomic 
constraints were analysed. It was shown that these three forms are equivalent and transform into one another. As a sequel to 
that analysis, similar issues are investigated for the case of non-linear quasi-coordinates and quasi-velocities and, in addition, 
the three forms of Hamilton's principle are exhibited in the case of a Legendre transformation, which transforms the equation 
of motion to canonical form in quasi-coordinates. © 1999 Elsevier Science Ltd. All rights reserved. 

1. We first consider a holonomic system with Lagrange coordinates qi and velocities qi subject to forces 
with a force function U(t, ql . . . . .  qn), and arbitrary independent smooth functions 

"qi =- f.(t,q,(l) (1.1) 

which are generally non-linear in the generalized velocities and such that det(afi/aqj) ~ 0. Throughout 
Section 1, the indices i, j, r and s take the values 1 . . . . .  n. 

Solving relations (1.1), we obtain the expressions 

eli = Fi(t,q, rl) 

substitution of which into (1.1) makes the latter identities. 
Obviously, 

(1.2) 

fsiFiir = 5sr '  f irFsi  = ~rs (1.3) 

where, as always below, summation is to be performed over repeated indices, and moreoverf~i - bf~/a~li, 
Fir =- ~Fi/O1]r; ~sr is the Kronecker delta. 

Following Hamel [2], we introduce the notation ns = rls, where n~ and r b are non-linear quasi- 
coordinates and quasi-velocities, and moreover 

a a a 
~ ' s  =- Fis ~qi bqi = f~i On s (1.4) 

Virtual displacements in Lagrange coordinates and quasi-coordinates satisfy the relationships 

~Xli - FisS~s, S~ s = fsi~.~qi (1.5) 

Substituting expressions (1.2) into the Lagrangian L(t,  q, q) = T(t, q, ~t) + U(t, q), where T(t, q, q) 
is the kinetic energy of the system, we obtain a function L*(t, q, 1]), in terms of which the 
D'Alembert-Lagrange principle takes the following form in quasi-coordinates 

~ + ~ w ~  =0 
ate.,. ~grlr ~s.} s (1.6) 

or the following form 
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~$ tT~i.i r = o  
(1.7) 

where we have used the notation of [3] 

) • d~,. a~  W f  - Fis d f , i  - °f i r  7..,' --  ~ '  (1 .8 )  
• dt Oqi ' d t  ~ s  

Since 5rq are arbitrary, it follows from Eq. (1.6) or Eq. (1.7) that the equations of motion of a 
holonomic system under the action of potential forces in quasi-coordinates are 

+--W; - = 0  (1.9) 

or 

d ~I~ 3C f~iT ~ _ 3/..* = 0 (1.10) 

Equations of the form (1.9) or (1.10) were first derived by Hamel  [2] from the central Lagrange 
equation using the following transitivity equations, which he established on the assumption that 
dSqi = ~ i  

d ~ s  d ~  
~J~$ -- W:~J'~ r and 5q, =-v"s Ti&~t (1.11) 

dt dt O(ti "r - " r  

Equations (1.9) and (1.10) were referred to as the first and second forms of the equations of motion, respectively. 
Hamel pointed out a disadvantage of Eqs (1.9): calculation of the coefficients W~s involves tli and//i, while Eqs (1.10) 
involve functions~/, which depend on qj, which may be expressed in terms of functions which depend on qi and 
rls. Equations (1.10) were a natural generalization of the Lagrange-Euler equations in linear quasi-coordinates, 
which had previously been derived by Hamel [2]. 

Novoselov [3], also using the transitivity equations (1.11), deduced Eqs (1.9) and (1.10) (with the factors OL*/OrQfn 
in the latter replaced by ~L/Oih) from Hamilton's principle 

~ L°dt = = = 0 (1.12) o, 8n,],. 8n~],, 
iO 

and called them equations of Voronets--Hamel and Chaplygin type, respectively. 
The same equations have been derived from the Maggi equation without using Eqs (1.11) [4]. 

Note that Eqs (1.9) or (1.10), in turn, imply Hamilton's principle (1.12); to verify this, one need only 
multiply them by ~%, sum over s, integrate the result with respect to t from to to tl, and then use (1.11). 

Using the Legendre transformation [5] 

aL" 
ys = - ~ s  , H* ( t ,q ,y )= ysTls - L* (t,q, rl) (1.13) 

We were able [4] to reduce Eqs (1.9) and (1.10) to the canonical form of equations in quasi-coordinates: 

3H* c3H* 
dye; +yrWsr  + ~  = 0 ,  "!]$ = (1.14) 
dt 3"tt s 3y s 

or 

~H* OH" (1.15) dy, _ y,f,~Ti + ~ = O ,  ,q = ~  
d t i~t , ~Y s 
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The coefficients W:and T: in these equations must be expressed in terms ofyr using relationships (1.1), 
(1.2) and (1.13). 

Equations (1.14) or (1.15) enable one to derive the second form of Hamilton's principle. Indeed, 
we multiply the first group of equations (1.14) or (1.15) by 8 ~  and the second group by -Sys, sum over 
all s, and integrate the result with respect to t; then, using (1.11) and putting ~ s  = 0 at t = to, tl, we 
obtain 

O =  J/! " "  " l ' y rW s + ~ / 0 / 1 ;  s - -  TIs = 
,.,t,t at j ) j 

_ t~( (dS~s WS~rcr)+rlsf)ys_SH.)dt=_~(ys~ls_H,)dt 
--:otYst dt ,o 

We have thus proved the validity 'of the second form of Hamilton's principle in quasi-coordinates 
for a holonomic system: 

t l  

(1.16) 
l 0  

Equations (1.14) and (1.15), in turn, may be derived from principle (1.16). It should be noted that 
principle (1.16) is important in its own right, in view of the assumption that the variation ~y, are arbitrary 
and independent of  the virtual displacement 8ns inside the interval (to, q)  [5]. 

2. We will now consider a non-holonomic system with k degrees of freedom, subject to non-linear 
constraints of  the form 

Tla =-- fa (t, q, [I) = O, rank(foa) = n - k 

i= I ..... n; a=k + I ..... n 

(2.1) 

Let us introduce arbitrary quasi-velocities 

rl$ = - f s ( t , q ,  i l ) ,  s = l  ..... k 
d t  

(2.2) 

such that det(fa) ~ 0 (i, s = 1 . . . . .  n), so that equalities (2.1) and (2.2) yield expressions of 
the type (1.2). The virtual displacements of a non-holonomic system are defined by Chetayev's conditions 

0fa ~Sql =0,  o t = k + l  ..... n (2.3) 

As before, the virtual displacements satisfy relations (1.5), but only for s = 1 . . . . .  k, since, by (2.3), 
constraints (2.1) imply that 8ha = 0 (a  = k + 1 . . . . .  n), while the quantities 6gs (s = 1 . . . .  , k) are 
arbitrary. Under  these conditions, the D'Alembert-Lagrange principle (1.6) or (1.7) implies the 
equations of  motion of  the non-holonomic system in quasi-coordinates in the form (1.9) or (1.10), but 
only for s = 1 . . . . .  k 

d 3L" ÷ Ws r - = 0, ~1. = 0 (2.4) 
d t  ig~l., ~ l t  s 

a aL" f.r'  - = O, n .  = 0 
a t a n ,  anr a=, 

s =  l .... k ; t z = k + l , . . . , n ; i , r = l  . . . . .  n 

(2.5) 
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One can set "qa = 0 in these equations only after expressing them in explicit form, since they generally 
involve all the derivatives bL*/~q~ (r = 1 . . . . .  n) . t  

The first k of both groups of the transitivity equations (1.11) retain their form provided that one has 
8nr = 0 for r = k + 1 , . . . ,  n on their right-hand sides, while the remaining equations take the following 
form [3] 

~ t  =-Wra6~r and 5tic t - - - . r _ . . ~  

r = l  .... .  k ; o t = k + l  ..... n ; i = l  . . . . .  n 

(2.6) 

Similarly, the canonical equations of motion have the form of the first k pairs of Eqs (1.14) and (1.15), 
that is, for s = 1 . . . . .  k, to which one must add the equations of constraint (2.1) rewritten as 

bH*lOya =0, ~ t = k + l  ..... n (2.7) 

For a non-holonomic system, Hamilton's principle in the form (1.12) or (1.16) is generally not valid, 
since indirect paths do not satisfy the equations of constraint (2.1) [1, 6]; but it is valid in H61der's form 

, : ,  . . . . .  k 
tO 

(2.8) 

and also in the corresponding second form 

t l  

f ~(Ys~s - H*)dt = O, ~n s],o = ~ ,  q = 0, s = 1 ..... k (2.9) 
to 

We will now derive the Voronets equations in quasi-coordinates, which involve terms which depend 
on the kinetic energy of the non-holonomic system [7]. To do this, we replace the kinetic energy 
T*(t, q, rl) of a holonomic system, which occurs in the function L*(t, q, ~) in Eqs (2.4) and (2.5), by the 
kinetic energy O*(t, q, r h , . . . ,  rk) of a non-holonomic system with constraints (2.1). Since the following 
relationships hold when rl~ = 0 (c~ = k + 1 . . . . .  n) [8] 

an, ~n,'~, ~, 'an~ kan~)o 
s = l  ..... k; o~=k+l  ..... n (2.10) 

where 

3rhx) o-~--'~'a nl~=°' ~=/+1 ..... n 

it follows that the first k equations of (2.4) and (2.5) may be expressed in the form of the Voronets 
equations in quasi-coordinates 

a ~e" a(o'+u)+(~r'] 
at 3rls 3~: LbrlijoWS' =0 ,  s = i  ..... k; i=1  ..... n (2.11) 

and 

i 

d 3®* ~(®*+U) (~T  / 7""=0, s = l  ..... k; i=1 ..... n (2.12) 

tWe take this opportunity to correct some misprint in [4]: on p. 538, line 11 from the top, "r, s = 1 . . . . .  k" should read: 
"s - 1 . . . . .  k"; in line 13 from the top, "(1) and (11)" should read: "(I) and (II)". [These misprints were corrected in the English 
translation of [4] (Ed.).] 



Forms of Hamilton's principle in quasi-coordinates 169 

where (~Z/aqi)* denotes the result of  replacing qi by (1.2) in the expression aT/~yi (i = 1 , . . . ,  n). 
Equations (2.11) and (2.12) imply the Voronets form of Hamilton's principle for a non-holonomic 

system, in the form 

j 8(o" = ~ t, + U ) -  Wsa~s dt=O, ~ t s t  o =0 
tok, o 

(2.13) 

or in the form 

to~, 
(2.14) 

Equations (2.11) or (2.12), in turn, may be deduced from (2.13) or (2.14), respectively [6]. 
Using the Legendre transformation 

Ys = "~s  ' H" (t, q, y) = yslls - O*(t, q,11)- U(t, q), s = I ..... k (2.15) 

subject to the condition II ~o*/all,O-q, II * 0 (r, s = 1 . . . .  k), one can reduce Eqs (2.11) and (2.12) to 
the canonical form of equations in quasi-coordinates 

,~, au" t 'ar'3 . an" + - - +  / / ~  = ( 2 . 1 6 )  
d, a. .  

and 

a." :a T. a." dy, 
+ ~ - . - - .  Ts'=0 , n , =  (2.17) 

at a~, Laq,) ay, 

Equations (2.16) and (2.17) enable one to obtain the second Voronets form of Hamilton's principle, 
in the form 

, , , : o ,  , : o  (2.18) 

or in the form 

'O L [,oqi .,) j 

s= 1 ..... k ; i=  1 ..... n; o l f k +  1 ..... n. 

(2.19) 

Using relations (2.10), it is not difficult to verify the truth of the equalities 

az," = a(e" + u ) - ( - . ~ - ) i ~ ,  ~ , = ~:e" + u ) + ( ~ ) r , ' a x ,  (2.20) 

which prove that the Voronets forms of Hamilton's principle in quasi-coordinates for a non-holonomic 
system are equivalent to the H61der forms. 

In conclusion, we consider an important special case in which the non-holonomic constraints (2.1) 
are solved with respect to certain generalized velocities. Suppose constraints (2.1) are given in the 
following form [!] 
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rla - fo(t,q, il) = glo - {P~,(t,q, g11 ..... elk) = 0 

As parameters rl~, we take the independent velocities qs: 

Throughout, 0 t = k +  1 , . . . , n ; s =  1 , . . . , k .  
In this case, Eqs (2.6) become the equations [1] 

and the first k transitivity equations (1.1) become identifies, since 

~rls w/ =-a4 ~ 7"=0, r = l  ..... k 

and moreover 

d 3~p~ 3~o 3q)~t 3(PI~ 
Aas = "dt 3ils 3qs 3ql~ 3Cls 

The Voronets equations (2.11) take the form [7, I] 

d ~O 3(O+U) 3(O+U) 3ipa 

dt Oils 3qs ~qo 3ils 

(2.21) 

(2.22) 

(2.23) 

tl 3T ) 
a.=o.   .1.o =a'.l.. =o 

10~, oq° 
(2.26) 

which is equivalent to the H61der form by virtue of (2.20), the latter taking the following form in terms 
of generalized coordinates and velocities [1] 

~r=r~+ ~r ( ~ - ~ )  (2.27) 

Using the Legendre transformation 

bO 
p, = -~--. , H(t, q, p) = PA, - O(t, q, q,)- U(t, q) 

oqs 

we reduce Eqs (2.25) to canonical form 

dps 3H 3H ( 3q) a "~* ( 3T Aa ~* 3qs 3H + ~ + ~  ~ =0,  = 
dt 3qs ~qa ~ ~ils ) -~,~q~ s j 3t ~Ps 

(2.28) 

where (~)* denotes the expression of ~g in terms ofp~. 

tNote that in [6] formula (51), equivalent to (2.26), and Section 6 were incorrectly referred to as Suslov's principle; the latter 
has the form (2.31) (see below). 

where O(t, q, ql . . . . .  qk) is the kinetic energy of a non-holonomic system in generalized velocities, into 
which the kinetic energy of a holonomic system T(t, q, q) is transformed when constraints (2.21) are 
taken into account. Equations (2.25) were derived by Voronets [7] from Hamilton's principle in the 
Voronets formt  

bT Asa _- 0 (2.25) 

- - - - ,  [3 = k + 1 ..... n (2.24) 



Forms  of  H a m i l t o n ' s  pr inciple  in quasi -coordinates  171 

Equat ions  (2.28) lead to the second Voronets  fo rm of  Hami l ton ' s  principle in general ized coordinates  
and m o m e n t a  

(2.29) 

H r l d e r  and Voronets  a ssumed  that  8dqi = d~gqi (i = 1 . . . . .  n). According to ano the r  point  of  view, due 
to Appel l  and Suslov, such relat ions only hold for  i = 1 . . . . .  k, while for  t~ = k + 1 . . . . .  n one has 

d s q a  - 84a = A.~q~. (2.30) 

where  ~ deno tes  the var ia t ion in the Appe l l -Sus lov  sense. This leads to Suslov's fo rm of Hami l ton ' s  
principle [9, 1] 

S(SL + - - A , .  ~q~)dt=O, ~L. ,o = ~/sl,, = 0  

X 

,,,( ~it~ 
(2.31) 

Since, on the assumpt ion  that  (2 .30)holds ,  equali ty (2.27) becomes  i T  = 80 ,  it is obvious that  (2.31) 
may  be reduced  to the Vorone ts  fo rm (2.26) of  Hami l t on ' s  principle. 

The  research  r epo r t ed  here  was suppor t ed  financially by the Russian Founda t ion  for  Basic Research  
(96-01-00261) and the Federa l  Specia l -Purpose  " In teg ra t ion"  P rogramme.  
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