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FORMS OF HAMILTON’S PRINCIPLE
IN QUASI-COORDINATES}
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In a previous paper [1], certain conditions, due to Holder, Voronets and Suslov in the case of linear constraints, for deriving
three forms of Hamilton’s principle in generalized coordinates and velocities for the general case of non-linear non-holonomic
constraints were analysed. It was shown that these three forms are equivalent and transform into one another. As a sequel to
that analysis, similar issues are investigated for the case of non-linear quasi-coordinates and quasi-velocities and, in addition,
the three forms of Hamilton’s principle are exhibited in the case of a Legendre transformation, which transforms the equation
of motion to canonical form in quasi-coordinates. © 1999 Elsevier Science Ltd. All rights reserved.

1. We first consider a holonomic system with Lagrange coordinates g; and velocities g; subject to forces
with a force function U(¢, g, . . ., g,), and arbitrary independent smooth functions

ni E.f}(tquq) (11)

which are generally non-linear in the generalized velocities and such that det(df/og ;) # 0. Throughout
Section 1, the indices 4, j, 7 and s take the values 1, . . ., n.
Solving relations (1.1), we obtain the expressions

q; = F(t,q.m) (1.2)

substitution of which into (1.1) makes the latter identities.
Obviously,

f:riFir = Ssr' f;'rEti = 8r.s (13)

where, as always below, summation is to be performed over repeated indices, and moreover f.i=9f,/9q,,
F;, = 0F;/am,; 8, is the Kronecker delta. )

Following Hamel [2], we introduce the notation 7, = m,, where 7, and n, are non-linear quasi-
coordinates and quasi-velocities, and moreover

d a d d
2 99 1.4
ox; e dg; dg; J on, (9

Virtual displacements in Lagrange coordinates and quasi-coordinates satisfy the relationships

8q; = Fdn,, dm, = f,8q; (1.5)

Substituting expressions (1.2) into the Lagrangian L(t, g, q) = T(t, 9, q) + U(t, q), where 7(, q, 9)
is the kinetic energy of the system, we obtain a function L*(t, g, m), in terms of which the
D’Alembert-Lagrange principle takes the following form in quasi-coordinates

d oL ar oL
—_ + W ——Br_=0
(dt a'l_\- a”r ’ a”:J'J : (16)

or the following form
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*

(i?L_-E_L_ i 0L \e o _ (.7

where we have used the notation of [3]

, df, o, )\ i_dF, 9F
We=F |2 | piglis i .

i s

Since dm, are arbitrary, it follows from Eq. (1.6) or Eq. (1.7) that the equations of motion of a
holonomic system under the action of potential forces in quasi-coordinates are

*

d oL oL oL

e —-—W’——:O 19

aom, o, " om, ()
or

4oL oL .. oL _, (1.10)

Equations of the form (1.9) or (1.10) were first derived by Hamel [2] from the central Lagrange
equation using the following transitivity equations, which he established on the assumption that

ddq; = ddg;

dor don o, i
5 _ - 5 d Rtk S = ——S Tl .
dt &15 W" anr an dt &ns aq-i r&t" (1 11)

Equations (1.9) and (1.10) were referred to as the first and second forms of the equations of motion, respectively.
Hamel pointed out a disadvantage of Egs (1.9): calculation of the coefficients Wy involves ¢, and g;, while Egs (1.10)
involve functions f,;, which depend on g;, which may be expressed in terms of functions which depend on g; and
;. Equations (1.10) were a natural generalization of the Lagrange-Euler equations in linear quasi-coordinates,
which had previously been derived by Hamel [2].

Novoselov [3], also using the transitivity equations (1.11), deduced Eqgs (1.9) and (1.10) (with the factors (0L*/on,)f,;
in the latter replaced by dL/dg;) from Hamilton’s principle

H .
8[L'dt=0, 8n,|,o=81r.s

to

=0 (1.12)

Ut

and called them equations of Voronets—Hamel and Chaplygin type, respectively.
The same equations have been derived from the Maggi equation without using Egs (1.11) [4].

Note that Eqs (1.9) or (1.10), in turn, imply Hamilton’s principle (1.12); to verify this, one need only
multiply them by 8n,, sum over s, integrate the result with respect to ¢ from ¢, to #;, and then use (1.11).
Using the Legendre transformation (5]

-

L * *
» H (t,g,y)=ymn;~L(t,q,M) (1.13)

s

Ys =

We were able [4] to reduce Egs (1.9) and (1.10) to the canonical form of equations in quasi-coordinates:

S +yW + =0, = — 1.14
dt yr 3 ans ns ays ( )
or
dy, i OH oH"
— T + ———= 0, = (1.15)
dt rfn s 8rt, 5 ay:
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The coefficients W, and T, in these equations must be expressed in terms of y, using relationships (1.1),
(1.2) and (1.13).

Equations (1.14) or (1.15) enable one to derive the second form of Hamilton’s principle. Indeed,
we multiply the first group of equations (1.14) or (1.15) by &=, and the second group by -0y, sum over
all 5, and integrate the result with respect to 7; then, using (1.11) and putting 8n, = 0 at ¢ = ¢, ¢}, we

obtain
dy ,  OH an‘} _
Lty W+ o, —| 1, — Sy, |dt =
o= ‘(( o+ 55

t
__jl( (d&n -W'on )+11,8ys -dH Jdt-—&j(y;qs -H)ar

o

We have thus proved the validity 'of the second form of Hamilton’s principle in quasi-coordinates
for a holonomic system:

H .
8[(y,n, —H')dt =0, 8m|, =8n], =0 (1.16)
fy

Equations (1.14) and (1.15), in turn, may be derived from principle (1.16). It should be noted that
principle (1.16) is important in its own right, in view of the assumption that the variation dy; are arbitrary
and independent of the virtual displacement &, inside the interval (7o, t;) [5].

2. We will now consider a non-holonomic system with k degrees of freedom, subject to non-linear
constraints of the form

Ne = fu(l,q,é) =0, rank(fm.) =n—-k

2.1
i=1,...moa=k+1,.,n (21)
Let us introduce arbitrary quasi-velocities
dn .
N, =—==f(t.q,9), s=1,...k (2.2)
dt
such that det(f;) # 0 (i, s = 1, . . . , n), so that equalities (2.1) and (2.2) yield expressions of
the type (1.2). The virtual displacements of a non-holonomic system are defined by Chetayev’s conditions
Pu 5 =0, a=k+1,...n (2.3)
94;
As before, the virtual displacements satisfy relations (1.5), but only fors = 1, . . ., k, since, by (2.3),
constraints (2.1) imply that 8n, = 0 (@ = k + 1, .. ., n), while the quantities 8n; (s = 1, .. ., k) are

arbitrary. Under these conditions, the D’Alembert-Lagrange principle (1.6) or (1.7) implies the
equations of motion of the non-holonomic system in quasi-coordinates in the form (1.9) or (1.10), but
onlyfors=1,...,k

doL oL oL’

L = w-2=0,1,=0 2.4
dt aﬂ a‘n K3 aﬂ.s n(! ( )
daL 3L ,qi 9L _o n, =0 2.5)

dean, am, " ° om,

s=1. ka=k+1,..mi,r=1,..,n
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One can set N = 0 in these equations only after expressing them in explicit form, since they generally
involve all the derivatives dL*/on, (r = 1, ..., n).t
The first k of both groups of the transitivity equations (1.11) retain their form provided that one has

on, =0forr =k + 1,...,n on their right-hand sides, while the remaining equations take the following
form [3]
_ o — ana ) 26
Mu__manr and Snu_a. Tr&tr ( . )
q;

r=1.,ko=k+1,..,ni=1,.,n

Similarly, the canonical equations of motion have the form of the first k pairs of Eqs (1.14) and (1.15),
that is, fors = 1, . . ., k, to which one must add the equations of constraint (2.1) rewritten as

OH 19y, =0, a=k+1,..,n 2.7

For a non-holonomic system, Hamilton’s principle in the form (1.12) or (1.16) is generally not valid,
since indirect paths do not satisfy the equations of constraint (2.1) [1, 6}; but it is valid in Holder’s form

|
[8L'dt=0, dm,

]

=8| =0, s=1,..k (2.8)

and also in the corresponding second form

| .
[8(yn, — H")dr =0, |, =8m,[,=0, s=1..k 2.9)
to

We will now derive the Voronets equations in quasi-coordinates, which involve terms which depend
on the kinetic energy of the non-holonomic system [7]. To do this, we replace the kinetic energy
T*(¢, q, ) of a holonomic system, which occurs in the function L*(z, g, n) in Egs (2.4) and (2.5), by the

kinetic energy ©*(t, g, My, - - - , M) of a non-holonomic system with constraints (2.1). Since the following
relationships hold whenn, =0 (a =k + 1,...,n)[8]

91‘_: 90 , 8L= 9@ +U), oL =[8T ) ; s=look a=k+1,..,n (2.10)

aﬂ; ans an’: aﬂ-\‘ an(l aﬂu 0
where

ar’) _or
= — =0 ﬁ=k+l,...,’l
(ana JO an(l nD 0

it follows that the first k equations of (2.4) and (2.5) may be expressed in the form of the Voronets
equations in quasi-coordinates

490 9O +U) +[aT ) Wi=0, s=l,..k i=1..n (2.11)

dt an: ans ani 0

and
G orY
0 +U T i )
i_@_)___(___)_ — | T/ =0, s=1..k i=l..n (2.12)
dt on; ar; 9q; )

+We take this opportunity to correct some misprint in [4]: on p. 538, line 11 from the top, “r,s = 1, ..., k” should read:
“s=1,..., k”; in line 13 from the top, “(1) and (11)” should read: “(I) and (1I)”. [These misprints were corrected in the English

translation of [4] (Ed.).]
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where (07/dg;)* denotes the result of replacing g; by (1.2) in the expression dT/3¢; (i = 1, .. ., n).

Equations (2.11) and (2.12) imply the Voronets form of Hamilton’s principle for a non-holonomic
system, in the form

?(6(9‘+U) [g: J W2n ]dt-—O on,,, =om, =0 (2.13)
0

9] o

or in the form

oo =81, =0 (2.14)

‘1[8(6 +U)+(8TJ T’81t,}1 =0,
to aql

Equations (2.11) or (2.12), in turn, may be deduced from (2.13) or (2.14), respectively [6].
Using the Legendre transformation

-

, H'(t,q.)=yn, -0 (6, M-U(tq), s=1,..k (2.15)

Ys =

S

subject to the condition || 8°@*/dn,on, || # 0 (r,s = 1, .., k), one can reduce Egs (2.11) and (2.12) to
the canonical form of equations in quasi-coordinates

dy au or" ) i oH"
s W =0, = —— 2.16
dr (an, A =%, (210
and
dy, oH (aT oH"
&2, 7 [ & =0, . =—oy 2.17
dt o, [aé, =%y @17)
Equations (2.16) and (2.17) enable one to obtain the second Voronets form of Hamilton’s principle,
in the form
t
}[S(y,n, - (ar ) Wwosn ]dt = =%, =0 (2.18)
to ana
or in the form
g aT ;
18, —H )+ — 5 T o, |dt =0, “0=51;3|“ =0 (2.19)
fo

s=lho,ki=l,..,moa=k+1,.,n

Using relations (2.10), it is not difficult to verify the truth of the equalities

oL =80 +U)- (%E—) Woon, =80 +U)+ [%Z ) ion, (2.20)
0 i

which prove that the Voronets forms of Hamilton’s principle in quasi-coordinates for a non-holonomic
system are equivalent to the Holder forms.

In conclusion, we consider an important special case in which the non-holonomic constraints (2.1)
are solved with respect to certain generalized velocities. Suppose constraints (2.1) are given in the
following form [1]
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No = falt.0.9) = g — Pa(t, @Gy G4) =0 2.21)
As parameters 1), we take the independent velocities qs:
s =g (2.22)

Throughout, o =k + 1,...,n;s=1,... k.
In this case, Eqs (2.6) become the equations [1]

ana = aéa - &pa = Af&h (2.23)

and the first k transitivity equations (1.1) become identifies, since

WS =_%‘1§.T’i =0, r=1...k
q.

!

and moreover

an=430 _29, _0a M o,

£ dt aqs aqs a‘Ip aq: (224)
The Voronets equations (2.11) take the form [7, 1]
ig_g_a(ew)_a(@w)a% —aiAf=O (2.25)
dt g, Og; 99, 94, 94,
where ©(t, ¢, 41, . . ., qx) is the kinetic energy of a non-holonomic system in generalized velocities, into

which the kinetic energy of a holonomic system 7(t, g, q) is transformed when constraints (2.21) are
taken into account. Equations (2.25) were derived by Voronets [7] from Hamilton’s principle in the
Voronets formt

i =84, =0 (2.26)

i[&(@) +U)+ aaTT'(sqa -8¢, ))dt =0, aqs

to [+ 3

which is equivalent to the Holder form by virtue of (2.20), the latter taking the following form in terms
of generalized coordinates and velocities [1]

8T =5e+§TT(&ia - 5¢,) (227

Using the Legendre transformation

20 . .
pe=3=: H(.a.P)= P4, ~010.4,)-U(t.q)

qs

we reduce Eqgs (2.25) to canonical form

ﬂ+a_”+2’i(3_<vg) _(iT_Aa] _o, %4 _9H (2.28)

where (y)* denotes the expression of y in terms of p,.

tNote that in [6] formula (51), equivalent to (2.26), and Section 6 were incorrectly referred to as Suslov’s principle; the latter
has the form (2.31) (see below).
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Equations (2.28) lead to the second Voronets form of Hamilton’s principle in generalized coordinates
and momenta

" a1 * (2.29)
J| 8(p,q; —H)"'{_-A;IJ dq, |dr =0, dq, 10 =8q.\-'r| =0
o aqu
Holder and Voronets assumed that 8dg; = ddq; (i = 1, . . ., n). According to another point of view, due
to Appell and Suslov, such relations only hold fori = 1, ..., k, while fora =k + 1, ..., n one has
4 59, -84, = A%Sq 230
Isqu =04y = A, 0q ( . )

where 8 denotes the variation in the Appell-Suslov sense. This leads to Suslov’s form of Hamilton’s
principle [9, 1]

0 _
J (6L+5‘~’41A;‘aqx]dz=o. 84y, =844, =0 (2.31)
[+3

Iy

Since, on the assumption that (2.30) holds, equality (2.27) becomes 8T = 86, it is obvious that (2.31)
may be reduced to the Voronets form (2.26) of Hamilton’s principle.
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